
Journal of Statistical Physics, Vol. 3, No. 3, 1971 

Brownian Motion of a 
Nonlinear Oscillator 
Mordechai Bixon 1,2 and Robert Zwanzig 1 

Received January 12, 1971 

Starting with the Langevin equation for a nonlinear oscillator (the "Duffing oscillator") 
undergoing ordinary Brownian motion, we derive linear transport laws for the motion 
of the average position and velocity of the oscillator. The resulting linear equations 
are valid for only small deviations of average values from thermal equilibrium. They 
contain a renormalized oscillator frequency and a renormalized and non-Markovian 
friction coefficient, both depending on the nonlinear part of the original equation of 
motion. Numerical computations of the position correlation function and its spectral 
density are presented. The spectral density compares favorably with experimental 
results obtained by Morton using an analog computer method. 
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1. I N T R O D U C T I O N  

We investigate here an application of techniques of nonequilibrium statistical 
mechanics to a simple nonlinear system, the "Duffing oscillator." This is an anhar- 
monic oscillator, with linear and cubic terms in the restoring force, undergoing 
ordinary Brownian motion as a result of interactions with a heat bath. 

The purpose of the investigation is to find linear transport laws that describe the 
motion of the average position and velocity of the oscillator when deviations from 
thermal equilibrium are small but the effect of nonlinearity in the restoring force 
cannot be ignored. This is done by a variant of the projection operator method 
introduced by Zwanzig (1) in connection with the decay of correlation functions, and 
developed by Mori (~) in his theory of generalized Brownian motion. 
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We believe that the results of this study illustrate two significant points in 
nonequilibrium statistical mechanics, the relation between linear transport laws and 
nonlinear microscopic equations of  motion, and the role of nonlinearities in the 
"renormalization" of transport coefficients. 

The first point was made in a somewhat different context by Van Kampen(3): 

"... linearity of the macroscopic law is not at all the same as linearity of the micros- 
copic equations of motion. In most substances Ohm's law is valid up to a fairly strong 
field; but if one visualizes the motion of an individual electron and the effect of an 
external field E on it, it becomes clear that microscopic linearity is restricted to only 
extremely small field strengths. Macroscopic linearity, therefore, is not due to microscopic" 
linear#y, but to a cancellation o f  nonlinear terms when averaging over all particles. It 
follows that the nonlinear terms proportional to E 2, E~,... in the macroscopic equation 
do not correspond respectively to the terms proportional to E ~, E3,... in the microscopic 
equations, but rather constitute a net effect after averaging over all terms in the micros- 
copic motion." 

In our calculations, Van Kampen's average over all particles is replaced by an average 
over a Langevin fluctuating force, and nonlinear powers of the external field E are 
replaced by a nonlinear restoring force, but the essence of his point will be seen clearly 
in our results. 

The other point illustrated here is the relation between transport coefficients in 
nonlinear transport equations and the corresponding coefficients in linear approxi- 
mations to those equations. Consider, e.g., the flow of a fluid near its gas-liquid 
critical point. The equations of motion are the Navier  Stokes equation and the 
Fourier heat law, or more correctly, the Langevin form of these equations as intro- 
duced by Landau and Lifshitz c4). These equations contain transport coefficients, 
the viscosity, and thermal conductivity, which are presumed to be nonsingular at the 
critical point; but they also contain important nonlinearities arising from dependence 
of local pressure and entropy on deviations from equilibrium. It appears that when the 
effects of nonlinearity are taken into account, e.g., by "mode-mode coupling, ''(5~ 
the resulting linearized transport laws contain r e n o r m a l i z e d  transport coefficients 
which can be singular at the critical point. In our calculations, it will be seen that a 
Markovian transport coefficient in a nonlinear Langevin equation is replaced by a 
non-Markovian transport coefficient in the linear equation for the average motion. 

Brownian motion of the Duffing oscillator may be described by either a Fokker-  
Planck equation or by a Langevin equation. The Fokker-Planck equation will be 
given later; the Langevin equation is 

= - ( x  + / 3 x  3) - ~ + o~(t )  (1) 

The displacement of the oscillator at time t is x ( t ) .  (For convenience, the mass and 
linear spring constant are both set equal to unity.) 

The fluctuating force o~(t) is a Gaussian random variable, with a zero mean 
value, and with a delta-function correlation 

<Y(t) ~-(t ')) = D 3 ( t  - -  t ' )  (2) 
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The spectral density D is related to the friction coefficient c~ by the fluctuation- 
dissipation theorem 

D = 2kBTc~ (3) 

where T is the temperature of the heat bath. (We may also set D equal to unity. This 
determines completely the mass, length, and time scales.) 

While we do not make use of the fact here, it is worth noting that the above 
Langevin equation can be derived from a well-defined Hamiltonian system, in which 
the anharmonic oscillator interacts appropriately with a heat bath of  suitably chosen 
harmonic oscillators. This was done by Ford el al. (6) 

The Langevin equation determines the actual, i.e., microscopic, motion of the 
oscillator. In this article, we derive linear equations for the average motion, 

d(x; t) 
d t  - -  ( v ;  t )  

d@; t )  (4) ( ,  

- -  g?2(x;  t )  - -  c~(v; t )  - -  | d s  K ( s ) @ ;  t - -  s )  
dt d 0 

where (x; t )  is the average displacement at time t, and @; t )  is the average velocity. 
In these equations, ~Q is an effective temperature-dependent frequency, and K(t )  is an 
additional non-Markovian friction coefficient. We give explicit formulas for these 
quantities, together with some numerical results, later in this article. The only special 
condition required for the validity of this linear transport law is that the average 
displacement and velocity must be sufficiently small at some initial time. 

An important property of the Duffing oscillator is the spectral density of its 
response to Gaussian noise. This has been measured by Morton, (v) using an analog 
computer, and some of his results were discussed by Morton and Corrsin. a We 
present numerical calculations of the spectral density, and compare them with 
Morton's results. In our calculations, we use a continued-fraction expansion of the 
spectral density, constructed so as to give exactly the first nine frequency moments 
of the spectral density. 

2. D E R I V A T I O N  O F  T H E  L I N E A R  T R A N S P O R T  E Q U A T I O N S  

The linear transport equations, giving the time dependence of the average 
displacement and velocity of the anharmonic oscillator, are derived in this section. 
First, we write down the Fokker-Planck equation for Brownian motion of the Duffing 
oscillator. Then, we introduce a projection operator that selects the part of the 
distribution function that is relevant to calculation of certain average values. We find 
a kinetic equation for this relevant part. Finally, we extract from this equation the 
desired linear transport equations. 

As is well known, all the dynamical and statistical information that is contained 
in the Langevin equation (including the statistical specification o f t  he fluctuating force) 

3 Ref. 8a gives a description of Morton's experiments, but only limited results. Further details are 
presented in Ref. 8b. 
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is contained also in the Fokker-Planck equation. This is an equation of motion for 
the distribution function f ( x ,  v; t) of oscillator displacements and velocities at time t. 
In the present case, this equation is 

af  v af  _ F(x)  af  ~ a(vf) 1 a y  
a t - -  ~ Fvv+ ~ + ~ D a v  2 (5) 

= ~ f  

The force on the oscillator is derived from a potential energy U(x), 

Zt~x4 F = - -aU/ax  U(x)=�89 ~ + ~  , (6) 

For convenience, we denote the entire operator on the right-hand side of Eq. (5) by 
the symbol ~ .  

The equilibrium distribution functionfo,  

fo Qo ~ exp{--(2c~/D)[lv 2 + U(x)]} (7) 

is a stationary solution of the Fokker Planck equation. (Q0 is the normalization 
constant, or partition function.) 

We are interested particularly in the evolution of the average displacement and 
velocity. This suggests that we may profitably introduce the projection operator P, 
defined by its effect on some arbitrary phase space function B(x, v), 

Equilibrium averages denoted by ( )0 are taken with the distribution function f0.  
The mean-squared velocity is 

(v'~)o = kBT = D/2c~ (9) 

and the mean-squared displacement is used to define an effective frequency D, 

(x~>0 = kBr /O  2 (10) 

It is easily verified that p2 = p. 
If  we make the special choice B = f ( x ,  v; t), then the projected part of the 

distribution function is "relevant" in the sense that it gives correctly the average 
values of x and v, 

f f  &dvx f  = f f  dxdvxU 

f~ & & v f  = j f  & & v u  
(11) 
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We denote these averages, taken with the distribution function at time t, by (x; t} 
and (v; t}. Then, the projected part o f f  may be written as 

P f  = fo[1 + (v(v; t}/(V2}o) -+- (x(x; t)/<XZ}o)] (12) 

The rest of our discussion will be restricted to situations where the remaining 
"irrelevant" part of f vanishes at some initial time t -- 0, 

(1 -- P ) f ( x ,  v; 0) = 0 (13) 

Thus, the initial distribution function is assumed to have exactly the structure of the 
projected distribution function in Eq. (12). 

It will be noticed that the projected distribution function Pf(x,  v; t) can become 
negative for sufficiently large displacements or velocities. For  the most part, this is 
not a reason for concern. For t :/= 0, Pfwil l  be used only as an intermediary quantity 
for calculating the average x and v; and for these quantities, it gives precisely the 
correct values. It may not give correct values for other quantities, but that is of no 
interest here. 

At the initial time, however, the potential negativity of Pf i s  of concern, because 
we assume that the actual distribution function has the structure of Eq. (12). Evidently, 
we must require that the initial average values are so small that Pf(x,  v; 0) itself does 
not become negative for any physically interesting values of x and v. This is one 
reason why our results are restricted to small initial deviations of the averages from 
their equilibrium values. 

Our assumption that the initial distribution function has the projected form can 
be justified by an argument due to Mori (2). Suppose that at the initial time we know 
the average energy, the average displacement, and the average velocity. The most 
probable distribution function consistent with these constraints is the one that 
maximizes the entropy under these constraints. (Or we may insist that the initial 
ensemble is in thermal equilibrium, subject to these constraints.) Then, the initial 
distribution function is 

f = 0 -1 exp[-(1/kBT)(�89 v ~ + U) 4- av 4- bx] (14) 

where a and b are Lagrange multipliers associated with the constraints. The partition 
function Q depends on a and b. The initial averages are given by 

(v} = ~(log Q)/~a, (x} = 6(log Q)/~b (15) 

By expanding the partition function in powers of a and b, and then solving for a 
and b in terms of the specified averages, we find 

a = (1/(V~)o)(V} 4- O(@}z), b = (1/(XZ)o)(X} 4- O(<x} 2) (16) 

When the average velocity and displacement are small, then so are the parameters a 
and b. If, finally, we expand the initial distribution function in powers of a and b, 
we obtain the general form that was assumed for the initial distribution. Again we 
see that the restriction of small average deviations from equilibrium has been imposed. 
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A kinetic equation for the projected part of the distribution function can be 
obtained by methods discussed, e.g., in Ref. (1). These methods are usually applied 
to the Liouville equation, but they can be applied just as well to the Fokker-Planck 
equation. The only change is to replace the Liouville operator by the Fokker-Planck 
operator ~ .  The result of the derivation is 

--  f*o ds k(s) P f ( t  - -  s) (17) gPf(t)/~t P ~ P f ( t )  

where the kernel (operator) is 

k(t) = - - e ~ ( 1  -- P ) -  [exp t(1 -- e ) ~ ] .  (1 -- e).@P. (18) 

Note that this equation does not contain an inhomogeneous term arising from the 
"irrelevant" part of the initial distribution function, because we have assumed that 
this vanishes. 

The various contributions to the kinetic equation can be worked out without 
difficulty. For  convenience, we introduce the notation 

P B  = foBo + (vfo/(V2)o) B~ -/(Xfo/(X2)o) B~ (19) 

which focuses attention on the components B 0 , B . ,  and B~. Then, we find that 

[PgPf(t)]o = 0 

[P~Pf(t)]~ = (v; t )  (20) 

[ P ~ P f  (t)]~ = --  f22(x;t) --  c~(v; t )  

The corresponding components of the memory term are 

[k(s) Pf ( t  --  s)] o = 0 

[k(s) Pf ( t  --  s)]~ = 0 
(21) 

- = f f  dx F(1 - P)[exp s(1 --  P)  NI [k(s) n f ( t  

• (1/(V2)o)fo(F + D2x)(v; t --  s)  

All the information that is contained in the kinetic equation for Pf( t )  is contained 
also in the equations of motion for the average values. These are 

a(x; t ) /at  = (v; t )  (22) 
t ~  

~(v; t ) /~t  - -~2 (x ;  t )  - -  a(v; t )  --  I ds K(s)(v; t --  s)  
0 

The memory kernel K(t) (now a function, and not an operator) is 

(1/@2)o) f f  dx dv(F + f2~x)[exp t(1 -- P) ~ ] (F  + ;22x)fo (23) K(t) 
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The above equations of motion, which are identical with Eq. (4), are the principal 
results of this derivation. They are linear, and are restricted to small initial deviations 
from equilibrium. However, they still contain the full nonlinearity of the original 
Langevin equation. In particular, the frequency D and the kernel K(t) are functions 
of the nonlinearity parameter/3. In the limit/3 --+ 0 corresponding to a linear system, 
the frequency D approaches unity, and the kernel K vanishes. 

Note that the final term in Eq. (22) involves a non-Markovian frictional behavior. 
If  the range of the kernel, i.e., its "memory," were sufficiently short relative to the 
other characteristic time scales in this equation, then we could approximate K(t) 
by a delta function; this would convert Eq. (22) to a Markovian equation. We shall 
see later that under some circumstances this cannot be done. The transport law is 
intrinsically non-Markovian. 

Equation (22) may be regarded as the average of an effective linear Langevin 
equation, having the same structure but with an additional fluctuating force. The 
mean value of the fluctuating force vanishes. Its correlation function, according to the 
fluctuation-dissipation theorem, consists of two terms; one its proportional to c~3(t), 
and the other is proportional to K(t). Since the latter is not a delta function, the 
fluctuating force in this effective linear Langevin equation is not Markovian. Thus, 
the Markovian nonlinear Langevin equation is approximated by a non-Markovian 
linear Langevin equation. 

3. C O R R E L A T I O N  F U N C T I O N  A N D  SPECTRAL D E N S I T Y  

The methods that we have just discussed can be used also to calculate the 
displacement correlation function and its spectral density. 

The displacement correlation function is defined by 

c(t) = <x(0) x(t)) (24) 

The average is taken over the equilibrium phase space distribution function of the 
oscillator, and over the distribution of fluctuations due to interactions with the heat 
bath. The time dependence of x(t) is determined by the Langevin equation. I f  we 
average first over the randomly fluctuating force, then the stochastic Liouville operator 
associated with the Langevin equation of motion is replaced by the Fokker-Planck 
operator, and the correlation function is given by 

C(t) : f f dx dv x "(exp t ~ ) .  Xf0 (25) 

In this form, all explicit effects of the heat bath are eliminated. 
It is evident that the correlation function may now be regarded as the average 

value of x at time t, computed with a distribution function that evolves from the 
initial value 

f (x ,  v; O) = Xfo (26) 

This has precisely the structure of the class of initial distribution functions that were 
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studied in the previous section of this article. Thus, the correlation function itself 
obeys Eq. (22), or 

t 

O(t) = --~2C(t) -- c~O(t) -- f ds K(s) C(t -- s) (27) 
0 

We emphasize that this equation, in distinction to Eq. (22), is exact. The difference 
is due to the character of the two initial distributions. In deriving Eq. (22), we used 
an initial distribution function that cannot be entirely correct because it is negative 
for some positions and velocities. But in deriving Eq. (27), the initial distribution 
function Xfo is introduced only as a convenient artifice in calculating the correlation 
function. The actual distribution function used to define the average in C(t) is f0,  
and this is positive. 

Equation (27) is solved most conveniently by Laplace transforms. We use .~(E) 
to denote the Laplace transform of A(t), 

-,t(e) = f ]  dt e-aA(t) (28) 

Then the solution is the inverse Laplace transform of 

O(e) = O(e)[E -? a + R(e)](X~)o (29) 

where 

~(~) = [~-" + ~> + ~ + ~R(~)] -1 (30) 

Note that the initial first derivative of C(t) vanishes because it is odd in the velocity. 
The quantity C(ioo) is a complex spectral density. Its real part is the cosine trans- 

form of C(t), 

Re d(ioo) = f ]  &(cos cot) C(t) (31) 

where Re denotes the real part. Aside from normalization constants, this is the 
quantity that was measured by Morton using an analog computer. 

On Laplace inversion (replacing ~ by ico), the time dependence of C(t) is found 
to be 

oo 

C(t) = (1/2rr) ( &o ei~@(ico) (32) 

(This result holds for positive t. For negative t, we must replace t by its absolute value.) 
Coefficients of powers of  t in the series expansion 

C(t) = ~ (C,J~/m!) (33) 
' m = 0  

are related to moments of the complex spectral density C(ico) by 

oo 

c.~ = (i)m(1/2~) f d~o ~o~C(i~o) 
- - o c  

(34) 
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They are also related to coefficients in the high-frequency expansion of C(ico) by 

O(i~o) = ~ [c~/(i~o) ~+1] (35) 

Equations having the same structure as Eqs. (32)-(35) apply also the memory 
kernel K(t) and its spectral density/s It is easy to see that knowledge of the 
first m terms in the power series expansion of K(t) is equivalent to knowledge of the 
first m 4- 2 terms in the power series expansion of C(t). 

In the following section, we use these results to find analytic approximations 
for C(t). Our procedure is to compute analytically coefficients in the expansion 

K( t )=  ~ (K,,~t~/m!) (36) 
Cn=0 

up to some power t M. (We have actually done this up to M = 7.) From this infor- 
mation on the high-frequency expansion 

K(io~) = ~ [Km/(io,) ~+1] (37) 
r 

we construct a continued fraction 

/r = A(0 )  
B(1)  + io~ - -  A(1 )  

B(2)  4- ico - -  A(2 )  

B(3) + i~o . . . .  

(38) 

which has the same high-frequency expansion. The constants A(0), A(1),..., B(0), 
B(1),... are determined by the coefficients Ko, K 1 ,.... We truncate the continued 
fraction at various levels to test convergence. 

Our procedure is fully equivalent to Mori's scheme ~9~ for finding a continued- 
fraction expansion for the spectral density of any time correlation function. 

To complete the calculation, we invert the cosine transform in Eq. (31), and 
obtain C(t). 

4. N U M E R I C A L  RESULTS 

This section contains some numerical results on the computation of the cor- 
relation function C(t) and its spectral density. These results were obtained partly 
to provide some information on the structure of the memory kernel, and partly to 
compare our procedure with results obtained by Morton using analog computer 
experiments. 

The power series expansion of the momery kernel is straightforward, although it 
rapidly becomes tedious. We simply expand the exponential operator in Eq. (23), 

K.~ = (1/(VZ)o) f (  dx dv(F + f22x)[(1 -- P) ~@]~(F 4- f22X)/o (39) 
d,J  
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Fig. 2. Same as Fig. 1, except/3 = 1.0. 
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Fig. 3. Same as Fig. 1, except/3 = 2.0. 

and iterate the operator (1 -- P ) ~  directly. In the course of the calculation, one gets 
averages of various powers of the velocity; these are computed with the Gaussian 
distribution of velocities. Also, one gets averages of various powers of derivatives 
of the force F(x). All powers of the force itself can be eliminated by the identity 

(FA(x)) = --kBT(A'(x)) (4o) 

Explicit formulas for K 0 to K v are given in the appendix. Because the force is a 
polynomial in x, all averages reduce to averages of  even powers of x. Further, the 
effective frequency X2 also requires knowledge of the average of x 2. 

It is easy to show that these averages are determined explicitly by 

where 

(x '%0 = (D/~5)"/ ' [F(n + �89189 u(,, z)/u(o, z) (41) 

and U(n, x) is a parabolic cylinder function. Numerical tables of these functions are 
given in Ref. (10). In this way, the frequency and all coefficients K~ can be found 
explicitly. 

As we have already pointed out, these coefficients can be used to determine a 
continued-fraction approximation to the spectral density of the memory kernel. 

z = (~/5D)1/2 (42) 
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Several different levels of  truncation were investigated. These are labeled by roman 
subscripts, and are 

Is ) = 0 
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B(3) -~ ico - -  A(3) /B(4)  

(It turns out that the constant B(1) vanishes, so it has been omitted.) Because of the 
way that the continued fractions are constructed, the constants A ( m )  and B(m)  are 
the same in all approximations. 

Equations (29) and (30) are used to construct the corresponding continued 
fraction approximations to G(io)). The real part  of  the spectral density is taken for 
comparison with Morton 's  experimental data. This time-dependent memory kernel 
and correlation function are found by Fourier inversion. 
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Fig. 4. Same as Fig. 1, except # = 3.0. 
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S a m e  as Fig.  1, excep t  c~ = 0.5 a n d / 3  = 0.1. 

This sequence of calculations has been carried out for six sets of parameters 
and/3. We present results in tabular and graphical form. 

Figures 1-6 show the spectral density Re C(ico), computed with our best 
approximation/~v(ico) to the memory kernel. These figures show also the experimental 
results obtained by Morton. (His values have been scaled down by a factor of  two 
because of a difference in definition of the spectral density.) 

The sequence of curves with c~ = 2 covers a wide range of nonlinearity, f rom 
/3 = 0.25 to /3  = 3.0. This value of ~ corresponds to critical damping in the limit 

/3=0. 
The curves with ~ = 0.5 are for/3 = 0.1 and/3 = 0.25. This value of ~ corre- 

sponds to underdamped oscillation in the limit/3 = 0. The resonant character of  the 
spectral density is clearly seen. The theoretical peak heights are considerably larger 
than the experimental ones. This may be due to Morton 's  use of  a bandpass filter 
with a nonnegligible bandwidth; any averaging process will tend to lower and broaden 
a resonant peak. 

Figure 7 shows the time dependence of the correlation function C(t) and also 
that of  the memory kernel K(t), for the case ~ = 2.0 and/3 = 2.0. These were con- 
structed with our best approximation Kv(ioJ). The correlation function oscillates at 
long times, with an amplitude that is too small to be shown in this figure. 

Note that the decay time of the memory kernel is about half the decay time of  
the correlation function itself. This extra contribution to the frictional behavior is 
evidently non-Markovian. However, the magnitude of the memory kernel is always 
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less than 0.15, and is to be added to the original friction coefficient a -- 2.0. While 
the memory kernel is non-Markovian, it has only a rather small effect on the decay 
of the correlation function. 

We have investigated the lower-order approximations to the memory kernel. 
To save space, we report some results in tabular rather than graphical form. Table I 

gives the zero-frequency values of the spectral density C(ia 0 for five approximations 
to the memory kernel. It contains also the effective frequencies for each c~ and/3. 

The zero-frequency behavior was chosen as a measure of convergence for the 
following reason. Our approximation method starts with a high-frequency expansion, 
which may be expected to converge only up to the singularity in the complex frequency 

Fig. 7. 
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time, for c~ = 2.0 and # = 2.0. 
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Table  I. Zero-Frequency Va lue  of the Spectral  Densi ty  C(ica), a 
for Var ious Frict ion Coefficients a and N o n l i n e a r i t y  Parameters  [3 
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/3 ~ ~I CII Cm C~v Cv 

0.5 0.1 1.10 0.335 0.335 0.337 0.366 0.337 

0.5 0.25 1.20 0.239 0.239 0.242 0.292 0.242 

2.0 0.25 1.07 0.376 0.376 0.377 0.377 0.377 

2.0 1.0 1.20 0.239 0.239 0.242 0.245 0.245 

2.0 2.0 1.32 0.168 0.168 0.171 0.175 0.173 

2.0 3.0 1.39 0.133 0.133 0.137 0.142 0.140 

The Roman subscripts refer to the approximations for the memory kernel listed in Eq. (43). The 
effective frequency ~ is included. 

plane that is farthest from the origin. The continued fraction is used to analytically 
continue the high-frequency expansion to the entire frequency plane. Thus, the value 
of  the continued fraction at the origin is a sensitive test of the adequacy of the 
analytic continuation. 

On inspection of Table I, it will be seen that convergence is fairly good for the 
highly damped case c~ = 2.0, and less good for the underdamped case o~ = 0.5. In all 
cases, the result obtained by omitting the memory kernel entirely is almost as good 
as the highest approximation. In a practical sense, the main effect of this theoretical 
treatment is the introduction of the effective frequency D. 

It must be mentioned that Morton and Corrsin have given an alternative 
theoretical treatment of this problem. They use an infinite-order perturbation expan- 
sion of the nonlinear Langevin equation, and perform resummations of selected 
classes of terms in this expansion. The spectral density of the correlation function is 
obtained by iterative solution of three coupled, nonlinear integral equations in three 
unknown functions. (Their method is modeled on one introduced by Kraichnan in 
his theory of turbulence.) The numerical results obtained by Morton and Corrsin 
agree with the computer experiments about as well, and perhaps a bit better, than 
ours. However, much more labor is involved in their treatment. 

5. C O N C L U S I O N  

The main point of this article was to show how one can get, from a nonlinear 
microscopic equation of  the Langevin type, a linear transport equation for an average 
value. The resulting linear transport equation is restricted to small initial deviations 
from equilibrium. It contains a renormalized oscillator frequency and a renormalized 
and non-Markovian friction coefficient, both depending on the nonlinearity para- 
meters of the original microscopic equation. 

A subsidiary point of the article was to present numerical calculations of the 
position correlation function of the Duffing oscillator. These calculations were based 
on a continued-fraction expansion, equivalent to precise specification of the first nine 
frequency moments of the spectral density of the correlation function. The results 
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of  the numer ica l  calculat ions are in fair ly good  agreement  with M o r t o n ' s  ana log  
compute r  experiments.  

A P P E N D I X  

Here are given the first eight coefficients in the expansion o f  the m e m o r y  kernel.  

K0 = _ Q 2  _ ( F ' }  

l q ~ 0  

K~ = ( F ' )  ~ - -  < (F ' )~5  

I(3 = - ~ K 2  

K~ = (3D/2oO((F") ~5 -- ( ( U )  35 4:- 2( (F ' )2}(F '} --  (F ' }  ~ + ~x2K~ 

K 5 = - - 5 D ( ( F " )  25 + 2c~[((F') ~5 - -  2((F')~(F')  § (F ' }  3] -- o~K2 

K6 = -- 15(D/2cO2(F") 25 + 21(D/2cO(F'(F") 25 

-- 6(D/2oO((U')~}(F '5 + (25/2)o~D((F") ~5 

- -  3o~z[{(F')35 - -  2{(F')2}{F'} @ <F'} 3] 

--  <(F')~) -+- ((F')252 + 2<(F')3}(F '5 --  3<(F')2)(F'}Z + <F') 4 -~ a4Kz 

Kv = (105/4)(D2/oO((F') ~5 -- (103/2)D<(F")2F '5 

+ 13D((F")~}(F '5 --  28~2D((F") 25 

+ 4o~a[((F') ~5 - -  2( (F ' )~} (F  '5 + ( F ' }  3] 

+ 3oq{(F') 4) - -  ( (F ' )~)  2 - -  2 ( ( F ' ) ~ ) ( F  ' )  + 3 ( (F ' )Z){F '}  2 - -  ( F ' ) q  - -  ~5K2 
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